$\begingroup$
I'm asked vĩ đại solve $\tan{x} = \tan{3x}$
Bạn đang xem: tan3x tanx
Here's my attempt:
$$\tan{x} = \tan{3x}$$ $$\tan{x} = \tan{(x + 2x)}$$ $$\tan{x} = \frac{\tan{x} + \tan{2x}}{1-\tan{x}\tan{2x}}$$
Recall the identity: $$\tan{2x} = \frac{2\tan{x}}{1-\tan^2{x}}$$
So then we have: $$\tan{x} = \frac{\tan{x} + \frac{2\tan{x}}{1-\tan^2{x}}}{1-\tan{x}\frac{2\tan{x}}{1-\tan^2{x}}}$$ $$\tan{x} - \tan^2{(x)} \cdot \frac{2\tan{x}}{1-\tan^2{x}} = \tan{x} + \frac{2\tan{x}}{1-\tan^2{x}}$$ $$-\tan^2{(x)} \cdot \frac{2\tan{x}}{1-\tan^2{x}} = \frac{2\tan{x}}{1-\tan^2{x}}$$ $$-\tan^2{x} \cdot \frac{2\tan{x}}{1-\tan^2{x}} \cdot \frac{1-\tan^2{x}}{2\tan{x}} = 1$$ $$\tan^2{x} = -1$$
This does obviously not compute. Why is my way wrong and how can I go about solving it?
asked Aug 8, năm 2016 at 22:00
user360165user360165
411 silver badge2 bronze badges
$\endgroup$
1
$\begingroup$
Why vì thế you try vĩ đại make things more complex kêu ca they are? Formally,
\begin{align*}\tan x=\tan 3x&\iff 3x\equiv x\mod \pi \\ &\iff 2x\equiv0\mod \pi \iff x\equiv 0\mod\frac\pi2. \end{align*}
However, $\tan x$ is defined if and only if $x\not\equiv\dfrac\pi2\mod\pi$, sánh the effective solutions are $$x\equiv 0\mod \pi.$$
answered Aug 8, năm 2016 at 22:24
BernardBernard
174k10 gold badges69 silver badges172 bronze badges
$\endgroup$
$\begingroup$
When you arrive at $$ -\tan^2x \frac{2\tan x}{1-\tan^2x} = \frac{2\tan x}{1-\tan^2x} $$ you can't multiply both sides by $\frac{1-\tan^2x}{2\tan x}$, because this operation is allowed only when the multiplier is nonzero.
You should rather move everything vĩ đại the right-hand side and collect terms, getting $$ 0=\frac{2\tan x}{1-\tan^2x}(\tan^2x+1) $$ Since $\tan^2x+1\ne0$, you get $$ \tan x=0 $$ and sánh $x=k\pi$.
You can also observe that $\tan3x=\tan x$ means $$ 3x=x+k\pi $$ so $$ x=k\frac{\pi}{2} $$ provided $\tan x$ and $\tan3x$ exist, which is not the case when $k$ is odd. Thus the solutions are $x=(2h)\frac{\pi}{2}=h\pi$ ($h$ integer).
answered Aug 8, năm 2016 at 22:28
egregegreg
237k18 gold badges138 silver badges321 bronze badges
$\endgroup$
4
$\begingroup$
You can't obviously cancel in the last (or one before the last, in fact) step, thus you must have
$$\frac{2\tan x}{1-\tan^2x}=0\iff \tan x=0\iff x=k\pi\;,\;\;k\in\Bbb Z.$$
answered Aug 8, năm 2016 at 22:08
DonAntonioDonAntonio
210k17 gold badges133 silver badges286 bronze badges
$\endgroup$
$\begingroup$
Your proof is fine up vĩ đại
$-\tan^2{(x)}(\frac{2\tan{x}}{1-\tan^2{x}}) = \frac{2\tan{x}}{1-\tan^2{x}}$
Then you vì thế $-\tan^2{x} \cdot (\frac{2\tan{x}}{1-\tan^2{x}}) \cdot (\frac{1-\tan^2{x}}{2\tan{x}}) = 1$.
Xem thêm: bình ngô đại cáo chân trời sáng tạo
But you can onlty vì thế that if $\frac{2\tan{x}}{1-\tan^2{x}} \ne 0$.
So you need vĩ đại say:
"Assume $\frac{2\tan{x}}{1-\tan^2{x}}\ne 0$ then
"$-\tan^2{x} \cdot (\frac{2\tan{x}}{1-\tan^2{x}}) \cdot (\frac{1-\tan^2{x}}{2\tan{x}}) = 1$
"$-\tan^2{x} = 1$.
"But this is impossible.
"So $\frac{2\tan{x}}{1-\tan^2{x}} = 0$"
And go on from there:
"So $\tan x = \sin x/\cos x = 0$.
"So $x = k\pi$".
=====
Or you can note $tan z = tan x \iff z = x + k\pi$.
So $3x = x + k\pi$ sánh $2x = k\pi$ sánh $x = \frac k 2 \pi$. But $\tan \frac k 2 \pi; k$ odd is undefined sánh $x = \frac k 2 \pi; k$ even or in other words $x = \frac n \pi$.
answered Aug 8, năm 2016 at 22:18
$\endgroup$
$\begingroup$
When you have this: $$-\tan^2{x} \cdot \frac{2\tan{x}}{1-\tan^2{x}} = \frac{2\tan{x}}{1-\tan^2{x}}$$
It it incorrect vĩ đại have this next: $$-\tan^2{x} \cdot \frac{2\tan{x}}{1-\tan^2{x}} \cdot \frac{1-\tan^2{x}}{2\tan{x}} = 1$$
Just lượt thích when you have (for example) $3 \cdot 2x = x$, it is incorrect vĩ đại then divide both sides by $x$ and kết thúc up with $6 = 1$ (you lose the solution $x = 0$ when you vì thế this).
The correct next step is vĩ đại subtract $\dfrac{2\tan x}{1-\tan^2 x}$ from both sides and continue as follows:
\begin{align} -\tan^2{x} \cdot \frac{2\tan{x}}{1-\tan^2{x}} &= \frac{2\tan{x}}{1-\tan^2{x}}\\[0.3cm] -\tan^2{x} \cdot \frac{2\tan{x}}{1-\tan^2{x}} - \frac{2\tan{x}}{1-\tan^2{x}} &= 0\\[0.3cm] \frac{2\tan{x}}{1-\tan^2{x}} \left(-\tan^2 x - 1\right) &= 0 \end{align} So then we have the following two equations: $$\frac{2\tan x}{1-\tan^2 x} = 0 \qquad \text{or} \qquad -\tan^2 x - 1 = 0$$
The first equation is trivial. The second one is perhaps even more sánh because the second one has no solutions.
answered Aug 8, năm 2016 at 22:20
$\endgroup$
$\begingroup$
Why vì thế you have an error?
If you divide though (by $\frac {2\tan x}{1-\tan^2x} = \tan 2x$ in this case), you must kiểm tra that whatever you are dividing by does not equal 0. Or, make a note vĩ đại review the case that it does.
$\tan^2 x = -1$ or $\frac {2\tan x}{1-\tan^2x} = 0$
An alternatives you could have taken:
$0 = (1 - \tan^2 x)\frac {2\tan x}{1-\tan^2x}\\ 0 = \sec^2 x \tan 2x$
But you are working a little bit too hard.
$\tan x = \frac {\tan x + \tan 2x}{1-\tan x\tan 2x}$
Rather kêu ca expand $\tan 2x$ right now, lets simplify a bit first
$\tan x- \tan^2 x \tan 2x = \tan x + \tan 2x\\ 0 = \tan 2x (1+\tan^2 x)\\ 0 = \tan 2x(\sec^2 x)$
Now, let's be even a little bit stupider.
$\tan x = \tan (x + k\pi)\\ \tan (x + k\pi) = \tan 3x\\ \tan^{-1}(\tan (x + k\pi)) = \tan^{-1}(\tan 3x)\\ x + k\pi = 3x\\ 2x = k\pi$
answered Aug 8, năm 2016 at 22:23
Doug MDoug M
57.7k4 gold badges32 silver badges66 bronze badges
$\endgroup$
You must log in vĩ đại answer this question.
Not the answer you're looking for? Browse other questions tagged
.
Not the answer you're looking for? Browse other questions tagged
.
Bình luận